73 research outputs found

    Border Detection on Digitized Skin Tumor Images

    Get PDF
    A radial search technique is presented for detecting skin tumor borders in clinical dermatology images. First, it includes two rounds of radial search based on the same tumor center. The first-round search is independent, and the second-round search is knowledge-based tracking. Then a rescan with a new center is used to solve the blind-spot problem. The algorithm is tested on model images with excellent performance, and on 300 real clinical images with a satisfactory resul

    Neural Networks Skin Tumor Diagnostic System

    Get PDF
    In this study, a malignant melanoma diagnostic system is designed using a straightforward neural network with the back-propagation learning algorithm. Eleven features are automatically extracted from skin tumor images. The correct diagnostic rate of this system is better than the average rate of 16 dermatologists who based their diagnosis with only the slide images

    A Novel Morphological Operator to Calculate Euler Number

    Get PDF
    This paper introduces a novel morphological operator to calculate the Euler number for binary images. The operator is based on the condition of eight-connectedness for foreground and four-connectedness for background. It is significantly faster than the previous operators. The morphological operations used in border detection are discusse

    Detection of Solid Pigment in Dermatoscopy Images using Texture Analysis

    Get PDF
    Background/aims: Epiluminescence microscopy (ELM), also known as dermoscopy or dermatoscopy, is a non-invasive, in vivo technique, that permits visualization of features of pigmented melanocytic neoplasms that are not discernable by examination with the naked eye. ELM offers a completely new range of visual features. One such feature is the solid pigment, also called the blotchy pigment or dark structureless area. Our goal was to automatically detect this feature and determine whether its presence is useful in distinguishing benign from malignant pigmented lesions. Methods: Here, a texture-based algorithm is developed for the detection of solid pigment. The factors d and a used in calculating neighboring gray level dependence matrix (NGLDM) numbers were chosen as optimum by experimentation. The algorithms are tested on a set of 37 images. A new index is presented for separation of benign and malignant lesions, based on the presence of solid pigment in the periphery. Results: The NGLDM large number emphasis N2 was satisfactory for the detection of the solid pigment. Nine lesions had solid pigment detected, and among our 37 lesions, no melanoma lacked solid pigment. The index for separation of benign and malignant lesions was applied to the nine lesions. We were able to separate the benign lesions with solid pigment from the malignant lesions with the exception of only one lesion, a Spitz nevus that mimicked a malignant melanoma. Conclusion: Texture methods may be useful in detecting important dermatoscopy features in digitized images and a new index may be useful in separating benign from malignant lesions. Testing on a larger set of lesions is needed before further conclusions can be made

    Automatic Color Segmentation of Images with Application to Detection of Variegated Coloring in Skin Tumors

    Get PDF
    A description is given of a computer vision system, developed to serve as the front-end of a medical expert system, that automates visual feature identification for skin tumor evaluation. The general approach is to create different software modules that detect the presence or absence of critical features. Image analysis with artificial intelligence (AI) techniques, such as the use of heuristics incorporated into image processing algorithms, is the primary approach. On a broad scale, this research addressed the problem of segmentation of a digital image based on color information. The algorithm that was developed to segment the image strictly on the basis of color information was shown to be a useful aid in the identification of tumor border, ulcer, and other features of interest. As a specific application example, the method was applied to 200 digitized skin tumor images to identify the feature called variegated coloring. Extensive background information is provided, and the development of the algorithm is described

    The Influence of PCl 3 on Planarisation and Selectivity of InP Regrowth by Atmospheric Pressure MOVPE

    Get PDF
    The introduction of phosphorus trichloride into the AP-MOVPE growth of InP has been found to dramatically improve the regrowth adjacent to mesa structures. By suppressing growth in the [100] direction and enhancing growth in the [311] directions planar regrowth is achieved. Polycrystalline deposits on dielectric masks can also be completely suppresse

    Applying Artificial Intelligence to the Identification of Variegated Coloring in Skin Tumors

    Get PDF
    The importance of color information for the automatic diagnosis of skin tumors by computer vision is demonstrated. The utility of the relative color concept is proved by the results in identifying variegated coloring. A feature file paradigm is shown to provide an effective methodology for the independent development of software modules for expert system/computer vision research. An automatic induction tool is used effectively to generate rules for identifying variegated coloring. Variegated coloring can be identified at rates as high as 92% when using the automatic induction technique in conjunction with the color segmentation metho

    Detection of Skin Tumor Boundaries in Color Images

    Get PDF
    A simple and yet effective method for finding the borders of tumors is presented as an initial step towards the diagnosis of skin tumors from their color images. The method makes use of an adaptive color metric from the red, green, and blue planes that contains information for discriminating the tumor from the background. Using this suitable coordinate transformation, the image is segmented. The tumor portion is then extracted from the segmented image and borders are drawn. Experimental results that verify the effectiveness of this approach are give

    Neural Network Diagnosis of Malignant Melanoma from Color Images

    Get PDF
    Malignant melanoma is the deadliest form of all skin cancers. Approximately 32,000 new cases of malignant melanoma were diagnosed in 1991, with approximately 80 percent of patients expected to survive five years [1]. Fortunately, if detected early, even malignant melanoma may be treated successfully. Thus, in recent years, there has been a rising interest in the automated detection and diagnosis of skin cancer, particularly malignant melanoma [2]. In this paper, we present a novel neural network approach for the automated separation of melanoma from three other benign categories of tumors which exhibit melanoma-like characteristics. Our approach is based on devising new and discriminant features which are used as inputs to an artificial neural network for classification of tumor images as malignant or benign. We have obtained promising results using our method on real skin cancer images
    • …
    corecore